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Abstract— In this paper, a revised form of Implicit Context
Representation Cartesian Genetic Programming is used in
the development of a diagnostic tool for the assessment of
patients with neurological dysfunction such as Alzheimer’s
disease. Specifically, visuo-spatial ability is assessed by analysing
subjects’ digitised responses to a simple figure copying task
using a conventional test environment. The algorithm was
trained to distinguish between classes of visuo-spatial ability
based on responses to the figure copying test by 7–11 year old
children in which visuo-spatial ability is at varying stages of
maturity. Results from receiver operating characteristic (ROC)
analysis are presented for the training and subsequent testing of
the algorithm and demonstrate this technique has the potential
to form the basis of an objective assessment of visuo-spatial
ability.

I. INTRODUCTION

Visuo-spatial ability can be defined as a person’s manipula-
tion of “visual representations and their spatial relationships”
[5] and is used in many every day activities such as parking
a car, reading a map or pouring a drink. A deficit of visuo-
spatial ability is observed in many neuropsychological con-
ditions, such as stroke, Parkinson’s disease and Alzheimer’s
disease, and consequently is an important symptom. How-
ever, conventional measurement of visuo-spatial ability can
be time consuming and is often subjective. The aim of the
work described in this paper is to develop an automated,
objective assessment of visuo-spatial ability that can be made
easily and reliably. Section II considers the conventional
evaluation of visuo-spatial ability using a traditional test
environment based on figure copying. Section III gives an
overview of Implicit Context Representation Cartesian Ge-
netic Programming and a revised development process used
for this research. Section IV describes how this algorithm
is used to evolve classifiers which automatically classify
subjects’ drawings. Section V presents results. Conclusions
and discussion are presented in Section VI.

II. EVALUATION OF VISUO-SPATIAL ABILITY

Early diagnosis of any neurological dysfunction is highly
desirable as it may permit appropriate therapies or treatment
to slow the progression of the disease and minimise its
symptoms. However, absolute diagnosis of many neurologi-
cal conditions is only possible by examining brain tissue and
is therefore impractical whilst the patient is alive. Due to this
difficulty, determining the presence of a neurological disease
is most often a diagnosis of exclusion, where the physician
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will try to find other causes of the symptoms, often by using
laboratory tests and neuroimaging techniques.

An important part of the diagnosis and monitoring of the
disease is to perform a neurological examination to evaluate
the extent of the impairment of the patient. For example, the
most common method of diagnosis based on these examina-
tions for Alzheimer’s disease (AD) is the NINCDS-ADRDA
Alzheimer’s Criteria [13] which examines eight cognitive do-
mains: memory, language, perception, attention, constructive
ability, orientation, problem solving and functional ability.
Problems within these domains could suggest the onset of
AD and the criteria leads to four possible outcomes: definite,
probable, possible and unlikely AD.

Geometric shape drawing tasks are often used to evaluate
visuo-spatial neglect. Several tests have been developed such
as the Clock Drawing Test, the Rey-Osterrieth Complex
Figure Test and cube drawing tests. Research into cube
drawing ability has not only shown that it is a useful tool in
the detection of AD but that it is also good at the detection of
very mild AD [16]. For cube drawing assessments detailed
marking criteria are used to grade the cube and hence
determine the level of impairment. One example of such
a criteria is presented in [1] which is used to mark the
development of cube drawing ability of 7 to 10 year olds
and shows many similarities with the criteria used in [16]
to mark drawings of elderly and AD patients. The scoring
system taken from [1] is as follows:

1) A single square or rectangle of any orientation.
2) A set of interconnected squares or rectangles number-

ing more or less than the number of visible faces in the
cube (three) or single trapezoid with some appropriate
use of oblique lines.

3) A set of three interconnected squares or rectangles not
appropriately arranged to represent the visible arrange-
ment of faces in the cube or a set of interconnected
squared or rectangles numbering more or less than the
number of visible faces in the cube including some
appropriate use of oblique lines.

4) A set of three interconnected squares or rectangles
appropriately arranged to represent the visible arrange-
ment of the faces of the cube or an inappropriately ar-
ranged set of three outlines including some appropriate
use of oblique lines.

5) Drawings that show only visible faces of the cube
appropriately arranged (as noted previously) and that
reveal crude attempts to show depth through use of
oblique lines, curvature, or modification to angles.

6) Drawings that approximate to oblique projection or



linear perspective or drawings that approximate well
to oblique projection or linear perspective but that are
drawn to a horizontal ground line rather than to an
oblique ground plane.

7) Drawings that are close approximations to oblique
projection or linear perspective but that contain some
inaccuracies in angular relations between lines.

8) Accurate portrayals of a cube in oblique projection or
linear perspective.

Figure 1 shows eight example drawings which have been
classified based on this system.

(a) Class 1 (b) Class 2 (c) Class 3

(d) Class 4 (e) Class 5 (f) Class 6

(g) Class 7 (h) Class 8

Fig. 1: Eight classifications of cube drawings using the marking
system described by Bremner et al. [1].

Application of the assessment criteria by trained assessors
can vary and, hence, is arguably unreliable, so it is desirable
to produce an assessment mechanism which will be able
to classify cube drawings in a completely objective way.
Guest and Fairhurst [8] implement an algorithm to extract
components from static hand-drawn responses for two figure
copying tests and one figure completion test. First the image
is ‘skeletonised’ then split it into its horizontal, vertical
and diagonal components by using directional neighbour-
hood identification. The components are then assessed based
on certain features, such as component omissions, length
difference and spatial differences in order to examine the
divergence between neglect and control responses. In [7]
they extend this idea to include the analysis of dynamic
performance features such as pen lifts, movement time and
drawing time to improve the sensitivity of the assessment.
By looking at these dynamic features they conclude that
they can gain an additional understanding of the condition.
However, the algorithms described in [7] and [8] use rigid
sets of rules designed by the authors based on observed
differences. This paper proposes a method in which this
level of subjectivity is removed by using an evolutionary
algorithm, Implicit Context Representation Cartesian Genetic

Programming, to identify the features used for classifying
subject responses.

III. IMPLICIT CONTEXT REPRESENTATION CGP
Implicit Context Representation Cartesian Genetic Pro-

gramming (IRCGP) [17] is a form of Cartesian Genetic
Programming (CGP) [15] which uses an implicit context
representation [10, 11, 12].

CGP is a graph-based genetic programming system which
has been shown to perform well within a wide range
of problem domains. A CGP solution consists of an n-
dimensional grid (where n is typically 1 or 2) in which
each grid location contains a function. Program inputs and
outputs are delivered to and taken from specific grid cells.
Interconnections between functions, inputs and outputs are
expressed in terms of the grid’s Cartesian co-ordinate system.
Variation operators (mutation and crossover) are able to
alter both the function present within a grid cell and the
connections between components.

The efficacy of CGP has been attributed to both implicit
reuse of sub-expressions (due to its graphical representation)
and its use of functional redundancy [14]. However, CGP
programs are positionally dependent, since the behavioural
context of a function (i.e. where it receives its inputs from
and sends its output to) is dependent upon its Cartesian
co-ordinate within the program’s representation. Positional
dependence, in turn, causes disruptive behaviour during
recombination. A consequence of this is that CGP programs,
in common with standard GP programs, do not generally
respond well to crossover operators [2] (except where the
operator is a good match to the problem [4]).

Implicit context is a means of introducing positional in-
dependence to GP solution representations. The principle
behind implicit context is that interconnections between
solution components (outputs, functions and input terminals)
are specified in terms of each component’s functional context
within the solution rather than its physical location within
the solution. Consequently, when a component’s location
changes following crossover (or mutation), its expected be-
haviour will not change. Implicit context representation was
originally developed for the Enzyme GP system [12].

In standard CGP, a function’s inputs are specified by
Cartesian grid references. In IRCGP, a function’s inputs
are specified by functionality profiles which are then re-
solved to Cartesian grid references during a simple constraint
satisfaction development process. Formally, a functionality
profile is a vector in an n-dimensional space where each
dimension corresponds to a function or terminal. This vector
describes the relative occurrence of each function and ter-
minal, weighted by depth, within an expression. In effect,
it provides a means of representing and comparing (through
vector difference) the functional behaviour of an expression.
Details of how functionality profiles are constructed in IR-
CGP can be found in Smith et al. [17].

The functionality profile(s) associated with a function
component describes the sub-expression(s) from which it
would prefer to receive its input(s). Prior to evaluation, an
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Fig. 2: Bottom-up development process for satisfying functionality profiles.

IRCGP solution undergoes a development process in which
each function and output component attempts to find the
sub-expression(s) which most closely match its functionality
profile(s). In previous work, this has been achieved using
the top-down development process of Enzyme GP [11].
However, the grid-structure and feed-forward nature of CGP
means that this can also be achieved using a bottom-up
process — which, in turn, leads to more accurate matching
between functionality profiles and the sub-expressions which
they connect to.

The bottom-up IRCGP development process is illustrated
in Figure 2. As in standard CGP, function components
(Fn) are ordered from the top left to the bottom right of
the grid (in column then row order). To prevent recurrent
connections, a component may only receive inputs from
the outputs of components lower in the ordering. Also in
common with standard CGP, connections are subject to a
levels back constraint — meaning that a component may only
receive inputs from one located within a specified number of
preceding columns.

Starting with an initially unconnected grid (Fig. 2a),
development begins at the first input of the first function
component (Fig. 2b). Since there are no other function
components before this component, it may only choose from
the program’s inputs (labelled I0–I2) — and will choose
whichever one which most closely matches its functionality
profile (I0 in this case). The development process will then
move on to the function’s other input(s) (Fig. 2c) and then up
through the other function components in the network until
all component inputs have been satisfied (Fig. 2d).

IV. METHODOLOGY

In previous work on automated Parkinson’s diagnosis [18],
it was shown that evolved IRCGP solutions are able to
describe acceleration patterns which are over-represented in
the movements of Parkinson’s patients relative to control
subjects. In this work, we extend the approach to the multi-
class cube drawing classification task described in Section
II. In particular, we hypothesise that the development or
degradation of visuo-spatial ability is reflected in the physical
movements of subjects when carrying out the cube drawing
task and, furthermore, that these patterns of movement (if
adequately described) can be used as a basis for automated
classification.

A. Data Collection

Drawings made by children can be easily digitised by us-
ing a commercial digitising tablet. Use of an inking, wireless
pen enables a traditional pen and paper environment to be
preserved, reducing stress and distraction in the participants.
Modern digitising tablets can sample pen movements up
to 200 times per second at a spatial resolution of up to
5000 lines per inch, enabling very fine reproduction of the
drawings made.

Drawings were taken from children ranging from 7 to 11
years attending a conventional state school (having obtained
local ethical approval and informed consent). Each child
was asked to make several attempts at drawing a copy of a
cube. Once the data was collected the cubes were manually
classified by two independent markers using the scheme
of Bremner et al. [1] (see Section II). No drawings were
identified as class 1.



In total, 120 drawings were recorded from 40 subjects
(each providing 2–4 drawings). The position of the pen,
both whilst drawing and whilst lifted from the tablet, was
recorded using a Wacom Intuos3 pen tablet at a sampling
rate of 200Hz. This position data was then converted to an
acceleration sequence using discrete differentiation, truncated
to one standard deviation around the mean (to remove
skew) and smoothed using a moving average filter of size
2 (to reduce noise). In order to normalise with respect to
drawing time, the resulting sequences were scaled (using
linear interpolation if necessary) to a standard length of 4000.
Acceleration values were then quantised to the integer range
[−10, 10]. This quantisation is intended to remove minor
fluctuations from the acceleration sequences, since classifiers
based on minor fluctuations are likely to be less meaningful
and more fragile than those based upon gross acceleration
features.

Based on the manual classification of the drawings,
the corresponding acceleration sequences were divided into
training and test sets, maintaining a ratio of approximately
2 : 1 both overall and within each class. In order to prevent
possible bias, multiple drawings from an individual subject
were not split between training and test sets.

B. Evaluation

An acceleration sequence is presented to an evolved IR-
CGP solution as a sequence of overlapping data windows of
length 30. For each of these windows, the IRCGP solution
calculates an output. Any value less than zero is interpreted
as a positive match. The classification of an acceleration
sequence is given by the number of positive matches over
all windows.

Receiver Operating Characteristic (ROC) analysis is used
to measure an evolved classifier’s fitness — its ability to
discriminate between data classes. A ROC curve plots true
positive rate (TPR) against false positive rate (FPR) across
the range of possible classification thresholds, where:

TPR =
Number of positive examples correctly classified

Number of positive examples

FPR =
Number of negative examples correctly classified

Number of negative examples

The area under a ROC curve (known as AUC) is often
used as a measure of classifier accuracy, since it is equivalent
to the probability that the classifier will rank a randomly
chosen positive example higher than a randomly chosen
negative example [6]. AUC scores fall within the range [0, 1],
where 1 indicates perfect discrimination between positive and
negative data sets, 0.5 indicates no ability to discriminate, and
0 indicates that negative data is always ranked higher than
positive data (i.e. perfect classification can be achieved by
inverting the classifier’s output).

The AUC metric can be extended to multi-class classifiers
by taking the mean of the AUCs of each pair of classes [9],
thus measuring the overall pairwise discriminability of the
classifier — in effect, how well the classifier separates the

classes within its output range. Hand and Till [9] define this
metric as:

AUCmulticlass =
2

|C|(|C| − 1)

∑
{ci,cj}∈C

AUC(ci, cj) (1)

where C is the set of classes and AUC(ci, cj) is the area
under the ROC curve when separating classes ci and cj . In
this work, we do not require that the classifier ranks the
classes in their original numerical order, only that it separates
the classes within the output range. This is done by inversely
mapping pairwise AUC scores in the range [0, 0.5) to the
range (0.5, 1.0].

C. Parameter Settings

We carried out 5 runs of 200 generations using a popula-
tion of 200 classifiers. Child solutions were generated using
uniform crossover and mutation in equal proportion. The
mutation rate was 6% for functions and 3% for functionality
dimensions. We used a CGP grid size of 9 rows by 8
columns. These values were determined experimentally. The
function set is defined in Table I.

TABLE I: Function Set

Function Symbol Description

Add + Returns the sum of its two inputs
Subtract – Returns the difference of its two inputs
Mean M Returns the mean of its two inputs
Min < Returns the lesser of its two inputs
Max > Returns the greater of its two inputs
Absolute || Returns the absolute value of its input
Negate ! Returns its input multiplied by -1

TABLE II: Pairwise AUC scores for best evolved classifier upon
training and test sets. High scores (0.2 > AUC > 0.8) are shown
in bold face. The last column indicates whether training and test
scores are correlated.

Pair Train AUC Test AUC Correlated?

2/3 0.83 1.00 yes
2/4 0.74 0.80 yes
2/5 0.05 1.00
2/6 0.66 0.90 yes
2/7 0.94 1.00 yes
2/8 0.89 0.90 yes
3/4 0.69 0.60 yes
3/5 0.00 1.00
3/6 0.39 0.80
3/7 0.87 1.00 yes
3/8 0.85 0.80 yes
4/5 0.10 0.80
4/6 0.28 0.68
4/7 0.57 0.70 yes
4/8 0.46 0.64
5/6 0.86 0.38
5/7 0.99 0.21
5/8 0.96 0.13
6/7 0.85 0.44
6/8 0.78 0.33
7/8 0.33 0.45 yes



Fig. 3: Best matching acceleration sequence windows against (top)
the best and two other high scoring classifiers. Vertical red lines
show the window offsets used by the evolved expression.

V. RESULTS

The best evolved classifier had a multi-class AUC score
of 0.70 on both the training and test sets. Table II shows
its AUC scores for each pair of classes. Of the 21 pairs of
classes, 12 have high AUC scores for both the training and
test sets. However, in some cases these do not correlate across
the training and test sets, which may indicate over-learning.
Nevertheless, the lower-numbered classes are fairly well
separated from the higher-numbered classes, suggesting that
the evolutionary algorithm has found a meaningful pattern.

Figure 3 shows the best matching sequence windows
against three of the highest scoring classifiers. A prominent
feature in these patterns is the presence of a dual deceleration
peak. This can also be seen in Figure 4 which overlays all
the sequence windows which were matched positively by
the best of these classifiers. Whilst there is a fair amount
of variance between the matches, most exhibit a dual peak
and a region of relatively constant acceleration either side.
This is especially the case for the stronger matches (i.e.
those which receive higher classification scores), indicated
by thicker lines in the diagram.

Figure 5 shows the locations of these match windows
within four example drawings from different classes. It can

be seen that whilst matches occur throughout the drawing
in the lower-numbered classes, they tend to cluster around
corners in the higher-numbered classes. This leads to the
hypothesis that the evolved expression is recognising regions
in which the subject hesitates or carries out jittery motion.
In the case of lower-numbered classes, this may reflect
the subject’s general unfamiliarity with the shape they are
attempting to draw; whereas in higher-numbered classes,
uneven motion only occurs around changes in direction.

Fig. 6: Best evolved classifier. Dotted lines indicate implicit reuse
of sub-expressions within the IRCGP network. Numbers indicate
offsets in the matching window.

Figure 6 shows the pattern matching expression used by
the best classifier. Whilst it is difficult to interpret the exact
behaviour of the classifier from this expression, it can be
seen that the sub-expression ‘18− 17’ is re-used four times
when calculating a match. Offsets 17 and 18 correspond
to the first peak in Figure 4, suggesting that the rate of
change of acceleration at this point is an important feature
underlying classification. It is also notable that the classifier
considers multiple pairs of offsets (7/21, 8/19, 13/22, and
10 with 17/18), where one occurs in the region preceding
the acceleration peaks and the other occurs within the peaks.
This strengthens the idea that the classifier is looking for
two different features, i.e. a region of relatively constant
acceleration followed by acceleration peaks.

The different separations between the pairs of offsets (14,
11, 9 and 7-8, respectively) also suggests that the classifier
is looking for the features at different time scales within
the match window. The use of fixed offsets is one of the
limitations of the current classifier model, since it requires
relatively complex expressions in order to describe a feature
occurring at different time scales. Whilst normalisation of
sequence length mitigates this effect at a gross level, it is
still likely that there will be timing variations between the
responses of different subjects within a class. In future work,
we plan to address this issue by looking at the utility of
feature-based encodings, such as time domain signal coding
[3], which are less sensitive to scale.



Fig. 4: Overlay of all positive matches to the best evolved classifier across all sequences. The weight of a line indicates the strength of
the corresponding match. Vertical red lines show the window offsets used by the evolved expression.

(a) Type 2 (b) Type 4

(c) Type 7 (d) Type 8

Fig. 5: Examples of drawings from four different type classes, showing match locations against the best evolved classifier. Red circles
indicate the start of positively matched windows within the drawing’s corresponding acceleration sequence.



VI. CONCLUSIONS

In this paper, we have demonstrated how Implicit Context
Representation Cartesian Genetic Programming can be used
to identify meaningful patterns of subject movement within
recordings of children carrying out cube drawing tasks. Our
results suggest that the resulting classifiers can be used to
categorise a child’s relative stage of neurological develop-
ment. In future work, we hope to apply this technique to
the automated diagnosis of neurological diseases such as
Parkinson’s and Alzheimer’s.

In addition, this work has shown how Implicit Context
Representation Cartesian Genetic Programming can be ap-
plied to a multi-class classification problem by using a multi-
class ROC analysis based fitness function. We have also
introduced a bottom-up development process to the algo-
rithm. Our practical experience suggests that this improves
the performance of the method, and in future work, we hope
to expose it to a more in-depth analysis.
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