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Abstract: Complex and highly distorted line drawings are produced by subjects attempting
the Rey Complex Figure test, a clinical test of neuropsychological assessment. However,
the marking scheme conventionally employed can be subjective and unreliable. In this paper,
the first stages in automating this scoring system are investigated using a robust technique to
locate a reduced set of scoring sections and a knowledge-based system that employs spatial
metrics and fuzzy approximation techniques. Testing the technique using clinical data produced
encouraging results that support the argument that this is a feasible approach for implementing
a fully automated system, and that in its current state, can be immediately applied in a
semi-automated system.

1 Introduction

In this paper we report progress towards automated
scoring of the Rey Complex Figure (RCF) test [1, 2], a
clinical test of neuropsychological assessment, for which
subject responses are typically complex and highly
distorted line drawings. Through robust estimation of the
distorted figural sections and spatial aggregation by fuzzy
approximation, our methods solve significant problems in
interpretation that clinicians currently have to do by hand.
We demonstrate how these methods might be applied in a
fully-automated system, identifying modules required to
complete such a system and the research challenges they
present, but we also show how our methods can be
immediately applied in a semi-automated context to
reduce clinician workload.
The RCF test is used to evaluate visual perception and

long term visual memory. It has been chosen for automation
for two reasons: first, it is probably the most complex
neuropsychological test of its type and as such provides a
suitable challenge by which the success of automating tests
of this type can be measured, and secondly, the RCF is
widely used in neurological assessment and consequently, it
is hoped this work will be of interest and benefit to the
medical community.
A typical protocol is to present the figure (as shown in

Fig. 1) to the subject, who attempts to reproduce it as
accurately as possible. The figure and the subject’s attempt
are removed and the subject is then asked to produce a copy
from memory.
A commonly used scoring system, devised by Osterrieth,

considers 18 sections (shown in Fig. 2) which are assessed
by their location and degree of distortion. Currently this

process is performed by hand, in a subjective manner, which
is open to interpretation [3–5].

Automation of the scoring system would provide an
objective and consistent result, while alleviating a highly
skilled clinician from a tedious and time consuming task.

In this paper we consider the location of scoring sections
within the subject’s drawing, from those shown in Fig. 2. This
is the second and most demanding stage in the full
automation of the Rey Complex Figure test. The first stage,
the identification of simple geometric shapes as candidates
for these scoring sections, has previously been demonstrated
by the authors [6]. The third and final stage is the assignment
of a numerical score for these scoring sections, which, by
comparison to the previous stages, is relatively
straightforward.

The nature of the Rey Complex Figure test is such that the
data it generates can be extremely distorted. Scoring
sections can be misplaced, repeated, or missing; they can
be incorrectly sized with large gaps in lines at corners or
along a side; lines can be bent, twisted, stepped, curved and
deviate a long way from a straight path. The sections can be
wildly out of proportion and lines can be multi-stroke.
Figure 3 shows distortions present in clinical data used for
testing the system.

Identification of a particular section is achieved through
the identification and location of its neighbouring sections.
However, it is difficult to determine whether it is the section
being considered that is incorrectly positioned, or the section
it is being compared with.

As mentioned above, we have previously demonstrated
that it is possible to identify the fundamental shapes
that are candidates for one of the scoring sections
(specifically triangles, rectangles and diamonds) using a
perceptual grading employing fuzzy techniques and
Gestalt psychology [6]. The scoring sections can then be
located using relative spatial metrics between the
candidates. This is a computationally expensive process
and so we reduce the number of candidates using absolute
spatial metrics [7].

2 Previous work

We have failed to identify any previous attempts to
automate the RCF scoring system in the literature, and
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found few examples detailing the automation of other
similar pen and paper tests. The latter is largely confined
to figure copying of simple geometric shapes such as cubes
[8, 9], squares and crosses [10, 11] for diagnosis of a range
of neurological conditions including stroke, Alzheimer’s
disease and Parkinson’s disease.

Hand drawn line figures and sketches are generated in a
number of applications and appeared to have an obvious
similarity to the RCF. The more complex of these recognise
hand drawn symbols for circuit and flow diagrams [12, 13]
and hand drawings [14, 15]. However, the symbols are
typically identified by their constituent parts, rather than the
juxtaposition and relationships with their neighbours and
thus, are not suitable for the RCF owing to the possibility of
missing and incorrectly positioned sections.

The conversion of paper plans and drawings for use within
CAD systems produces a complex line drawing that can be

damaged, introducing distortion and hence, has a number of
similarities to the RCF. Examples include [16, 17],
which typically use a knowledge based system [18]. Graph
matching [19] and relaxation probabilities [17] have also
been employed but again simple absolute thresholds and
consistency of rules are employed respectively.

Many computer vision and image understanding tech-
niques use edge detection and other pre-processing
techniques to reduce a complex image into a number of
significant lines. Distortion and occlusion are often present
producing a scenario which is actually closer in nature than
the processing of hand drawn figures and conversion of
paper plans described above. Applications include robot
navigation [20, 21], building location [22, 23] and scene
interpretation [24, 25]. The spatial relationships used to
locate features are generally intuitive and heuristic in nature
to describe relationships such as near, above, below, left and
right. With a common junction, relationships such as above
and below can be very simply defined, however, with more
complex areas these relationships are no longer simple.
Keller and Wang [26], and Krishnapuram and Ma [27]
compared three spatial relation techniques; the aggregation,
centroid and compatibility methods. Experimental results
indicated that the aggregation method gave more intuitive
results.

The human visual system can easily group certain
elements together that are considered as visually important.
Gestalt Psychology [28, Chapter 5] proposes that the
properties of the whole are not the result of the summation
of the parts and its relevance to visual perception is
considered in this work. The features identified as
significant in the grouping procedure can be summarised
as proximity, curvilinear continuation, similarity, closure,
symmetry, common region and connectedness [29].

Fig. 1 The Rey complex figure

1: cross

2: large rectangle

3: diagonal cross

4: horizontal Line

5: vertical line

6: small rectangle

7: small segment

8: parallel lines 9: triangle

10: line

11: circle with 3 dots

12: parallel lines

13: triangle

14: diamond
15: line

16: line

17: cross18: square

Fig. 2 The Osterrieth scoring system

Fig. 3 Examples of distorted figures
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The range of applications that have similarities to the
RCF is large but none have the same degree of distortion. A
flexible and robust technique is required to describe the
perceptual significance of the features to be identified.

3 Description of system

We scan a subject’s test responses and after pre-processing
vectorise constituent lines to form a frame system. This is
comprehensively searched to find the base shapes using a
rule set for a corner and continuation of a straight side.
Located shapes are then rated on perceptual distortion using
fuzzy metrics.
The number of candidates for each scoring section is

reduced by initially considering each candidate in isolation
using unary metrics. These metrics are fuzzy in nature and
based upon absolute position, size, orientation and basic
shape features. Each candidate for each section has
a similarity metric calculated based upon the aggregate of
a number of these metrics. Features with a measure above a
working threshold are considered for further processing.
With the number of candidates for a section reduced we

apply fuzzy binary metrics based upon Gestalt features such
as relative position, size, contiguous, touching, inside,
outside, above, below, left, right and relative orientation.
Each section has a number of metrics defined, which are
calculated and aggregated to give a final measure.
Since the RCF has eighteen scoring sections we defined a

number of smaller subsections of the figure to prevent
combinatorial explosion. The best candidates for the
subsections are combined to generate the scoring section
instances for the whole figure.
We now describe the system implemented to identify

relevant scoring sections within the RCF in more detail by
considering the following sub-processes: candidate
reduction, binary relations and figure aggregation.

3.1 Candidate reduction

We reduce the possible scoring section candidates from the
features found by use of unary and non-specific binary
metrics. The unary metrics are fuzzy in nature and based
upon absolute position, size, orientation and basic shape
features. The non-specific binary metrics are largest size,
extreme point and distinct feature. The largest size metric
compares a feature’s size to the largest of all the candidates
for that section. This is expressed as a fuzzy membership by
using the half trapezoidal function, mh [30]. If the set of all
the candidates for a given scoring section is SCORE and the
size of a candidate, ci 2 SCORE, is denoted by si then the
largest size metric is defined by (1).

mlargestðciÞ ¼ mh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxcj2SCORE½sj�

si

r� �
ð1Þ

The extreme point metric compares, in a given axis, all the
points of a candidate shape with the extreme points of all the
candidates for that section. This metric reduces the effects of
other misplaced sections, as shown in Fig. 4. Although the
cross is much higher than triangular Section 13, this triangle
still has the upper point above all other candidates, which is
the desired result. This is described in (2)

mextremeðciÞ ¼ mh
minpj2Pi

min½jpj � ep1j; jpj � ep2j�
si

� �
ð2Þ

where the set of all corner positions of a candidate in a given
plan is Pi and ep1 and ep2 are the two extreme corner

locations of all the candidate shapes. si is the size of the
figure in the appropriate axis.

The highlighted triangle in Fig. 5 can best be described as
part of the rectangle which has a diagonal line through it.
The scoring sections are currently considered in isolation
and so this would be considered as a perfect triangle. The
distinct metric grades triangles that are within rectangles.
A triangle is indistinct if it is inside and contiguous with a
rectangle. Hence:

mdistinctðciÞ ¼ max
gj2GREC

½mcontigðci; gjÞ \ minsideðci; gjÞ� ð3Þ

where mcontigðci; gjÞ and minsideðci; gjÞ are the fuzzy member-
ships for contiguity and inside for the candidate as defined in
Section 3.2.

Each scoring section has a definition in terms of unary
and non-specific binary metrics. The candidates for each
scoring section have the appropriate metrics calculated
which are aggregated to give the candidates similarity
measure. The unary metrics are aggregated using a weighted
generalised mean. The relevant non-specific binary metrics
are combined with these results using the Yager intersection
(AND) function [31] to give the candidate’s final result.

munaryðciÞ ¼ \
n

k¼0

Xp
i¼1

wpkm
ak
pk

 !
1=ak

ð4Þ

where mpk is the pth metric for scoring section k with the
weight, wpk. Candidates below a working threshold are
discarded.

The non-specific binary metrics used for each scoring
section are listed in Table 1.

Fig. 4 Example of effectiveness of the extreme point metric

Fig. 5 Example of an indistinct feature
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3.2 Binary relations

The identification of a particular section is based on its
relationship with other sections. This is a difficult task since
any particular section can be misplaced, missing or
repeated. Many distances are best considered relative to
the size of the shape they relate to. However, we discovered
that, in some extreme situations, this was either too harsh or
too lenient [6], and so an absolute factor was also included.
Many of the metrics are considered independently in the x
and y axes. If the highlighted rectangle in Fig. 6 is
considered then it is clear that its position is correct in the
horizontal axis but incorrect in the vertical axis.

A summary of the metric types is given in Table 2.
The relative size of two features is based upon the

distance between the extreme points in a given axis.
However, if two features are contiguous then the size of
the sides touching are of most importance and so a second
size metric (contiguous size) is defined. The size metric is
calculated as shown in (5).

usizeðci; cjÞ ¼ uh
si
sj

� �
ð5Þ

where si and sj are the sizes of candidate ci and cj
respectively in the given axis and differ for relative size and
continuous size. This results in two metrics; Fig. 7a shows
two features with a similar height (vertical size) while
Fig. 7b shows two features with similar contiguous size.

The relative position is based upon the location of a
shape’s corner, with respect to the candidate’s side. This
allows an incorrectly sized shape to possibly score correctly
for one edge and in effect produces an aggregation method
of spatial relations [32]. This is described in (6)

mpositionðci; cjÞ ¼ m
d

l

� �
ð6Þ

where d is the absolute distance from the start of the
reference figure, l is the length of the feature, as shown in
Fig. 8 and is the result expressed as a fuzzy membership by
using the full trapezoidal function, m [30].

The contiguous nature of some scoring shapes is an
important perceptual feature and is reflected by the
contiguous metric. The grouping process produces a given
number of comparison points along the side of each shape.
The perpendicular distance to the other feature is calculated
at each comparison point and aggregated to give a
perpendicular closeness thus

mPerpCloseðci; cjÞ ¼
X

dpn2DP

1

jDPj mrðdpn; hÞ
a

 !1
a

ð7Þ

where mr returns a combined fuzzy membership of both
absolute and relative measures; all the perpendicular
distances of the grouping points, dpn, on the side in the
given axis are in the set DP and h is the smallest height of
both candidates.

The two close sides must also be overlapped in a parallel
direction, hence the contiguous membership is given in (8)

mcontigðci; cjÞ ¼ mPerpCloseðci; cjÞ \ mrðo; lÞ ð8Þ

Fig. 7 Examples of features of similar size

a Vertically
b Contiguously

Table 2: Summary of binary metrics

Metric category Summary

Relative size and position Measure of the size in a given

plane and position

Contiguous and touching Measure of two features

touching along a length or at

a point

Inside, outside and direction Measure of whether a feature is

inside, outside or in a given

direction compared to

another feature

Point outside, direction and

distance

As above but considers a single

point rather than the whole

feature

Orientation Measure of relative orientation

between features

Fig. 6 Section incorrectly positioned in one axis

Table 1: Metrics used to reduce candidates

Scoring section 2 Largest

Scoring section 9 Extreme point (vertical), distinct

(vertical)

Scoring section 13 Extreme point (horizontal), distinct

(horizontal)

Scoring section 14 Extreme point (horizontal)

Scoring section 18 Extreme point (vertical)

l

d

where a cut
corner is present,
both the corner
and side end
points are
considered

Fig. 8 Example of relative position
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where o is the absolute distance that the two sides overlap
and l is the shortest length of the two candidates. Hence,
Fig. 9a shows an example with perfect contiguity, while
Fig. 9b and Fig. 9c have a lower contiguous membership.
The touching metric describes a point contact at a corner

of a shape to a side on the other feature. The touching metric
for candidate ci side ends on cj is:

mstouchðci; cjÞ ¼ maxdppk2DPP;dplk2DPL½mrðdppk; hÞ

\ mrðdplk; lÞ� ð9Þ

whereDPP andDPL are the sets of all the perpendicular and
parallel distances respectively from all side end points of ci
to all the sides of cj. h and l are the smallest height and
length of the candidates respectively. Hence, the touch
metric is given in (10)

mtouchðci; cjÞ ¼ max½mstouchðci; cjÞ; mstouchðcj; ciÞ� ð10Þ

Figure 10 shows some examples of touch metric; Fig. 10a is
perfect while Figs. 10b and 10c have a lower membership
but are still significant.
Features can be inside or outside another feature.

The general outside metric of a polygon can be expressed
as in (11)

moutsideðci;cjÞ ¼max½mosideðci;cj;1Þ:::;mosideðci;cj;nÞ� ð11Þ

where there are n sides to the polygon, and mosideðci;cj;mÞ is
defined in (12)

mosideðci;cj;mÞ ¼ \
pdi2PDCm

mhðpdiÞ if pdi>0

1 otherwise

�
ð12Þ

where PDCm is the set of the perpendicular distance of all
the comparison points on ci to the side m of cj. Both of the
lower squares shown in Fig. 11 are outside (and below); the
left one having a lower outside membership.
The inside metric is the fuzzy complement of the outside

metric: minsideðci; cjÞ ¼ 1� mosideðci; cjÞ. When considering a
contiguous feature (such as rectangular scoring section 18) it

is possible for a shape to be inside (or outside) in a given axis
but not the other. If section 18 is considered then, while it is
outside rectangle 2 in the vertical axis, it should be inside in
the horizontal axis. This is achieved by expressing any
external distance of the contiguous sides as a fuzzy metric.

A feature can be above, below, left or right of another
shape. This is calculated in a similar manner to the outside
metric except only the relevant side is considered.
Symmetry is a perceptually significant feature and so a
shape that has been misplaced with symmetry must be
considered as more significant than one without.

Some features are in a given direction, inside or outside a
reference shape which does not have a suitable side to use as
reference. The triangle scoring section 13 should be to the
right of triangle scoring section 9 (as well as below). With no
contiguous sides it is not possible to use any sides as
the reference and hence the extreme point is used. If the set of
the distance from all the comparison points of ci to the
appropriate extreme side end point of cj is DC, given that if
the point falls between the two extreme points of cj the
distance is positive, then the outside point metric is given
by (13)

mPoutðci; cjÞ ¼
X

dck2DC

1

DCj j mdðdckÞ
a

� �1
a

ð13Þ

where

mdðdckÞ ¼
mrðdck; lÞ if dck>0

1 otherwise

�
ð14Þ

Features also have a relative orientation. The error between
the closest angles of the sides of a shape (or axis for a
diamond) is converted into a fuzzymembership.Hence, if the
setA contained the differences in angles of all sides of ci to all
sides of cj then:

morienðci; cjÞ ¼ m min
ai2A

½ai�
� �

ð15Þ

This results in a metric that will still consider the features
shown in Fig. 12 as having similar orientation.

Each scoring section has a number ofmetrics specified that
define the relationship between each other scoring section.
A weighted aggregation of all the relational metrics between
two features is used to generate a final similarity measure for
any two features. Hence, if the set of binary metrics that
describe the relationship between scoring section i and j are
described in BMij, each with an associated weight, wk, then
the similarity for the relationship between candidates ck 2
SCOREi and cl 2 SCOREj is calculated by (16)

Fig. 10 Various degrees of touch

a Perfect
b,c Examples of lower membership

Fig. 9 Various degrees of contiguity

a Perfect contiguity
b,c Examples of lower configurous membership

Fig. 11 Squares outside
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mbinaryðck; clÞ ¼
X

bmk2BMij

wkbm
a
k

0
@

1
A

1
a

ð16Þ

This measure allows some metrics to be poor while still
resulting in a high similarity.

3.3 Figure aggregation

To prevent combinatorial explosion we consider the figure
broken into a number of subsections. The section candidates
that make up the best subsection instances are combined to
give the figure instances. The reduced implementation of the
Osterrieth scoring system is covered by two subsections as
shown highlighted in Figs. 13a and 13b.

It is possible for a scoring section to be repeated and so
the power set of candidates for each scoring section is
generated, i.e. all possible combinations of the section’s
candidates are grouped into a number of different collec-
tions. This includes the empty set which is necessary since it
is possible that all the candidates located are incorrect or
that a section is not present. Inconsistent combinations of a
section’s candidates are discarded (inconsistent is defined as
overlapping instances). The cartesian product of each
member in these power sets generates a set of section
instances that are used for a given subsection instance,
denoted as SCj for subsection instance j. Each scoring
section candidate has a similarity membership calculated
when considering it within the set of all the scoring section
candidates for that subsection. This is denoted mscoreðcj; SCiÞ
and is defined as

mscoreðcj; SCiÞ ¼ [
ck2SCi;c; 6¼ck

wjmbinaryðcj; ckÞ ð17Þ

where wk is the weight for the relationship between the
scoring section of cj and ck such that

P
wa ¼ 1 for all the

scoring sections within the figure subsection.
This results in the fuzzy OR function and so the similarity

is of a given section is most influenced by the best
relationship with any other feature. However, a Yager
function [31] was used which still enabled some effect from
other features.

The similarity for a given subsection instance is the
aggregation of the binary similarity measure and is given by

m0subðSCiÞ ¼ \
c;2SCi

wl:mscoreðcj; SCiÞ ð18Þ

where wl is the associated weight in the range [0,1]. Hence,
a subsection’s similarity is heavily influenced by the poorest
section’s similarity. However, the use of a Yager intersec-
tion (AND) enabled some influence by all the sections.
Note: m0subðSCiÞ differs from msubðSCiÞ, the final subsection
similarity, by a coverage factor which is included to prevent
the inclusion of trivial instances. This takes the form of a
multiplying factor which is the ratio of scoring sections used
compared to the number of scoring sections located.

A suitable instance from each subsection is combined to
generate a figure instance. The union of the section
candidates in each subsection instance is used to form the
set of section candidates for the figure instance, such that
FCi ¼ SCa [ SCb. However, where subsections contain a
common scoring section, only consistent subsection
instances can be combined to generate a figure instance;
i.e. the same section candidates for the common section
must be used in all subsections. The similarity grade for
a figure instance is calculated in the same manner as a
subsection instance and so

mfigðFCiÞ ¼ \
cj2FCi

wj:mscoreðcj;FCiÞ ð19Þ

where mscoreðcj;FCiÞ is the similarity measure for candidate
cj given the set of candidates FCi. wk is the associated
weight.

Again, in a similar manner to the subsection calculation, a
factor is applied to a figure’s grade that indicates the number
of sections used compared to the number found. Also, figure
instances below a threshold from the highest figure instance
were discarded.

As stated, a poor resultant grade does not necessarily
indicate an incorrect result; however, every line of a figure
should be identified. In a completed system, a quantity of
unidentified figures can be used to indicate a suspicious
interpretation and verify the grading.

4 Results

We tested the system using 31 random RCF drawings
produced by children attending the Institute of Child
Health, London, displaying a typical spread seen by the
Neuropsychological Unit. Some 16 drawings were
produced by copying the figure and 15 from recall. In
total 140 scoring sections were to be identified and located
by the system [6].

The location, rating and grading processes performed
well, locating all but one scoring section and coinciding
closely with subjective grades generated by independent
raters [6]. After grouping, an average of 43 triangles, 77
rectangles and 42 diamonds were identified as candidates
for scoring sections. Our use of unary metrics reduced

a b

Fig. 13 Osterrieth scoring system covered by two subsections

a Subsection A
b Subsection B

Fig. 12 Example of two features with the same orientation

Table 3: The number of scoring section candidate located
in the test data

Scoring

section 2 9 13 14 18

Number of

candidates

Average 8.30 1.03 4.57 0.77 0.97

Maximum 52 4 12 2 3

Number of

combinations

Average 9.3 2.0 8.7 0.8 1.0

Maximum 53 5 28 3 5
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these candidates by an average of 88% with no scoring
sections discarded [7]. The non-specific metrics were then
used to reduce the remaining candidates by an average of
56%, resulting in a total reduction in candidates of 96%.
Again, no scoring section instances were discarded. The
resultant number of scoring section candidates is given in
Table 3.
The reduction in candidate numbers and a tendency for

candidates for the same section being inconsistent resulted in
the number of combinations for repeated scoring sections
being acceptable.
The generation of the subsection instances performed

well; an average of 419 instances of subsection A and 20
instances of subsection B were generated, causing no danger
of combinatorial explosion. Of the 31 test figures all but
three generated the correct instance for the data generated

by the previous processing stages. A selection of correctly
located subsections is shown in Fig. 14 with the identified
features being highlighted.

Three subsections did not identify the correct scoring
section instances. However, these were from figures that are
distorted to such a degree that it is impractical to locate them
automatically.

As we only describe a partial implementation here, the
results need to be interpreted with some care. Using a
suitable threshold to define a unique solution (i.e. where the
similarity measure of the second highest is less than 0.9 of
the highest) in only eight of the 31 test figures were all the
scoring sections correctly selected from the candidate
shapes. A selection of correctly identified scoring sections
is shown in Fig. 15. Development of a module to
disambiguate incorrectly identified scoring sections would

Fig. 14 Examples of correctly identified subsections

a,c Subsection A
b,d Subsection B

Fig. 15 Example figures with correctly identified scoring sections
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increase the success rate to approximately 75%, with the
majority of the remaining figures being too difficult even for
human scorers to interpret. While an initial extension of the
system to handle such cases is straightforward, our
experience with the complexity of interpreting highly
distorted figures suggests that developing a robust module
is a substantial challenge for future work.

As an intermediate solution to the problem, we have
incorporated the processes described above into the semi-
automated analysis system shown in Fig. 16. This system
enables the user to observe the location and identification of
the scoring structures interactively. Where a scoring section
has been incorrectly identified, an alternate can be proposed
by the system and selected by the user for inclusion in the
marking process. Although this requires some user inter-
action, the subsequent grading of the scoring sections will
still be fully automated.

This efficient and quantitative assessment of the subject’s
response to the RCF provides an objective alternative to the
existing subjective manual scoring procedure. The semi-
automated system employs a standard Windows interface
with shortcut tool-bar buttons, which is simple to use and is
familiar to even casual computer users. Initial use of the
system has identified an increased confidence in the use of
the RCF as a whole, as the process by which scoring
sections are identified is more transparent and repeatable,
removing much of the subjective input by the marker that
has previously been the source of much concern. From this
experience, it is confidently predicted that when complete,
this system will reduce, significantly, the time taken to mark
a patient’s response and hence, lower the resource over-
heads in undertaking neurological assessment of this type.

It is important to stress, however, that the protocol for
administering the RCF is unaffected. Normal practice
regarding longitudinal, repeat and other testing schemes
will be preserved allowing comparisons to be made in the
traditional way.

5 Conclusions

In this paper we have presented a knowledge based system,
employing fuzzy approximation techniques that can be used
to locate the Osterrieth scoring sections of the Rey Complex
Figure This neurological pen and paper test can produce a
highly distorted line figure that poses an extremely
challenging and novel problem for which no previous
automated solution is available. Although at present a
reduced set of scoring sections has been implemented to
demonstrate the feasibility of the technique, we have shown

how these can be incorporated into a semi-automated
analysis system.

The system developed has demonstrated its ability to
cope with clinical data in a practical manner that can be
scaled to the full figure. Many of the techniques can also be
applied to the process of generating the score of the sections
to produce a completely automatic system. The technique
therefore offers a robust and effective alternative to the
existing subjective and resource intensive marking
procedure.

Although the work described here has been applied
specifically to the Osterrieth scoring sections of the Rey
Complex Figure, there is no reason why the technique
cannot be adapted to other neuropsychological tests of
similar form. Specific examples include the Bender-Gestalt
test [33] (which comprises a number of copying tasks, each
a combination of two or more basic geometric shapes), the
clock drawing test to measure executive cognitive dysfunc-
tion [34] and the Taylor Complex Figure [35], an alternative
to the RCF. Considerable adaptation of the techniques
reported in this paper is necessary to implement these tests,
but the same benefits of a resource efficient, quantitative
assessment is achievable.
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